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THERMOELECTRIC COOLING:
REVIEW AND ANALYSIS

INTRODUCTION

Why consider thermoelectric cooling as a means of dissipating the heat
generated by the environment and human metabolism for a ground troop dressed
in chemical warfare (CW) protective clothing? This Review attempts to answer
this question and also to explain some of the advantages and disadvantages
associated with thermoelectric cooling technology.

COMPARISON OF COOLING TECHNOLOGIES

Since thermoelectric cooling systems (heat pumps) are often compared to
conventional electromechanical cooling systems, one way to highlight the simi-
larities and differences in these two refrigeration technologies is to
describe the respective systems.

Conventional Electromechanical Cooling Technology

In a conventional electromechanical cooling system, mechanical work is
performed on a fluid; and the result is a thermodynamic cycle (1-5). During
part of the cycle, the temperature of the fluid is above the ambient sink
temperature, and thus dissipates heat. During another portion of the cycle,
the temperature of the fluid is below the temperature of the medium to be
cooled, and thus absorbs heat. A conventional electromechanical cooling
system (Fig. 1) has four fundamental components: a condenser, compressor,
evaporator, and an expansion valve (1,2,5). As illustrated in Figure 1,
beginning at point 1, the fluid is usually in the gaseous state (mixture of
vapor and liquid droplets or mist), The compressor raises the pressure and
temperature of the fluid. The compression must be sufficient to raise the
temperature of the vapor (point 2) above that of the ambient sink. The con-

* denser is a heat exchanger which cools the vapor by dissipating its superheat
and latent heat of condensation to the ambient, and the result is a subcooled
liquid (point 3). The expansion valve is a device to separate regions of high
and low pressure. Expansion through the valve results in a drop in the fluid
temperature below that of the source of heat (point 4). The evaporator is a
heat exchanger which absorbs heat from the medium to be cooled, and thus
raises the temperature of the fluid to point 1 (Fig. 1), from which the ther-
modynamic cycle originated.

EDITOR'S NOTE: Available at the close of this publication is a selective
list (plus definitions) of the "Abbreviations, Acronyms, and Symbols"
used throughout the Review.
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Thermoelectric Heat Pump

In contrast to the conventional electromechanical cooling system, a ther-
moelectric heat pump is a solid-state device with no moving parts, fluids, or
gases. The basis of this system (heat pump) is the thermoelectric element.
As illustrated in Figure 2, a thermoelectric element consists of a series con-
nection of two semiconductors, one of which possesses electron conductivity
(n-type), and the other, hole conductivity (p-type) (6-46). With a suitable
source of direct current input power, a thermoelectric element forms a hot and
cold junction with the two semiconductor materials. At the cold junction,
energy, in the form of heat, is absorbed by electrons as they pass from a low
energy level to a higher enerav level. At the hot junction, on the other
hand, heat is liberated because the electrons return from the high energy
level to the lower energy level (6,72).

Thermoelectric heat pumps were originally developed in the 1960's to sat-
isfy unique and exacting military and aerospace temperature regulation appli-
cations (73-86). When these devices failed to compete economically with con-
ventional electromechanical cooling technologies for mass applications (such
as domestic refrigerators), most large companies, and industry in general,
lost interest. Since then, these devices have found use primarily in special-
purpose applications (7-10,11-13,16,21,22,24-27,29,30,33-35,38,40-42,54,56,58,
68,69,71,73-253) that include:

a. military/aerospace (cooling infrared, photomnultiplier, and charge-
coupled-device detectors);

b. laboratory/scientific (laser tuning, cooling electronic integrated
circuits, cold chambers, microtome stage coolers, osinometers,
and dew-point hygrometers);

c. medical (hypothermia blanket chillers, ophthalmological cornea
freezers, blood analyzers, and tissue processing refrigerators);
and

d. commercial (aircraft water coolers, mobile refriqerators,
restaurant display case coolers).

Thermoelectric heat pumps, commercially available in various shapes and
sizes, -provide a means to cool objects, fluids, and gases to well below
ambient temperatures. A typical thermoelectric module (fundamental building
block) Consists of 44 thermoelectric semiconductor elements; is 1.5 in. by 1.5
in.. square, and 0.25 in. thick (3.81 cm by 3.81 cm square by 0.64 cm thick);
and weighs approximately 25 grams (254-257).

in addition to being compact, lightweight, and insensitive to orientation,
thermoelectric heat pumps offer very high reliability, good maintainability,
low cost of operation, accurate and rapid thermal regulation, and a low oper-
ating noise level. The high reliability of thermoelectric heat pumps has been

demonstrated by a number of operating systems which have performed for very

long periods of time 'with no thermoelectric module failures or known degra-
dations (113,122,143,145,149,'150,159,179,217,233,234,236,246). The solid-
state modular nature of the thermoelectric heat pump module permits rapid
replacement of defective components and prompt reentry into service. In con-
trast to operators of conventional compressor refrigeration systems, service
personnel do not require high skill levels (and thus need shorter traininq
periods).

4
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Comparison of Conventional Electromechanical Cooling
and Thermoelectric Heat Pump Technologies

A comparison between conventional electromechanical cooling technology and
thermoelectric heat pump systems was addressed at the renth International
Congress on Cooling, held at Kodani, and the results have been reported in the
literature (32,68,117).

The basis of conventional electromechanical cooling is the cooling medium
(fluid), and its efficiency can be compared with that of the thermoelectric
semiconductor material. Compression and expansion of the conventional elec-
tromechanical cooling meditmi in a thermodynamic cycle corresponds to the
exchange of heat between a thermoelectric semiconductor element and the
ambient. The mechanical losses that occur during a conventional electrome-
chanical cooling medium's compression and expansion can be compared to the
degradation of the thermoelectric semiconductor material's figure of merit
(Z), which is a function of the material's junction contact resistances and
dependency on temperature. Finally, the performance of a compressor in a con-
ventional cooling system can be compared to the performance of the direct cur-
rent power supply of the thermoelectric heat pump. The efficiency of each
process or element (n, through n4) is summarized in Table 1 (32,68,117):

TABLE 1. COMPARISON OF CONVENTIONAL ELECTROMECHANICAL COOLING AND THERMO-
ELECTRIC HEAT PUMP TECHNOLOGIES

Efficiency
Technology nl n2 n3 n4

Conventional 0.8 0.5 0.5 0.6
(cooling (compression/ (mechanical (compressor)
medium) expansion) losses)

Thermoelectric 0.1 0.9 0.7 0.7
(material) (heat exchange) (contact (power supply)

resi stance)

If a thermoelectric heat pump were to have an identical overall performance
efficiency representative of the present conventional electromechanical
cooling system technology, the thermoelectric semiconductor material's figure
of merit (Z would have to increase from the current average value of
3 x 1o OK to approximately 10 x 10-3 OK-1 (32,68,117). On the basis of
present knowledge, the estimated value of Z for any material will not exceed
6 x 10-° OKl (258-265).

Thus, to a considerable extent, the inherent capabilities and limitations
of thermoelectric heat pumps are determined by the characteristics of the
thermoelectric semiconductor material and fabrication process. Factors--such
as temperature limitations, operatinq efficiency, reliability, durability,
size, weight, configuration, power requirements, and cost--are all related to
the fundamental thermoelectric semiconductor material and fabrication

6



process. To provide a basis for evaluating the feasibility of using thermo-
electric heat pump modules to dissipate the heat generated by the environment
and human metabolism for a ground troop dressed in CW protective clothing,
the important characteristics of thermoelectric materials are summarized here.

THERMOELECTRIC MATERIALS

Solid-state materials are generally classified by their electrical proper-
ties (metals, semiconductors, and insulators). The useful crystalline mate-
rials for thermoelectric elements are classified as semiconductors, having an
electrical conductivity between metals and insulators. With respect to ther-
moelectric materials, the most important material characteristic--the figure
of merit (Z)--describes the usefulness of a material by the following rela-
tionship (49-53,61,63-65,265-279):

2
Z (1)

where a = Seebeck coefficient

6= electrical conductivity

k = thermal conductivity

As shown by Equation (1), control of the Seebeck coefficient, electrical
conductivity, and thermal conductivity is essential to obtain a high figure of
merit. In addition, all three quantities are a function of the density of
free charqe carriers (Nc) in the material (265-279).

Several investigators have shown that a semiconductor's figure of merit
(Z) has a maximum value in the region where the free charge carrier density
(Nc) is on the order of 1018 to 1021 carriers per cubic centimeter (265-
279). The relationship of the three important thermoelectric material proper-
ties (a, 6, and k), as a function of the free charge carrier concentration
(Nc), is shown in Figure 3 (277-293). The electrical conductivity (6)
increases with increasing carrier concentration (277,278,280-286). The
thermal conductivity (k) has two components: a lattice thermal conductivity
which is independent of the carrier concentration; and the electronic thermal
conductivity which is proportional to the free charge carrier concentration
(277-279,282-293). Thus, the difficulty in identifying an optimum thermo-
electric material is now apparent. Insulators have large a's, but low elec-
trical conductivities. Metals, on the other hand, have very small a's. The
most favorable figure merit value corresponds to those c's, 6's, and k's
characteristic of highly doped, near-degenerate semiconductors (semi-metals)
(277-282,287-293).

In the selection of a thermoelectric semiconductor material, a large free
charqe carrier concentration (Nc) is desirable--one which, from a solid-
state physics viewpoint, is associated with a low band-gap enerqy (Eg)

7
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Figure 3. Thermoelectric material properties as a function of
the free charge carrier concentration.

(292,293). Maximizing the band-gap energy is important, however, to avoid
intrinsic conduction at the highest anticipated operating temperature. Exten-

sive research has led to the discovery of several thermoelectric semiconductor
materials. The common thermoelectric materials and their important physical
properties are summarized in Table 2 (6,7,10,12,16,19,20,27,28,31,35,36,45,
49-52,54,55,59-63,66,67,73,74,81,114,116,118,119,254 -256,277,280-286,288,289,
294-372).

For applications near ambient temperature (300K), Bi2Te3, BiSb,,Te 7.5 ,
and Bi2Te2Se are the best semiconductor materials for thermoelectric heat pump
applications (295,299-302,305-309,313,314,316,334,342,346,357,363,368). Im-
provement in the techniques of solid solution alloying of BiSbTe7 .5 (p-type
semiconductor) and Bi2Te2Se (n-type semiconductor) has been the principal fac-
tor that has advanced the state of the art for thermoelectric heat pump mater-
ials.

THEROMELECTRIC DEVICE PERFORMANCE AND THEORY

The thermoelectric phenomenon is the result of five distinct effects
(Seebeck, Peltier, Thomson, Fourier, and Joule) that act concurrently (3,7,
8-16,24,27,31,40,45,49,57,62,68). The Seebeck, Peltier, and Thomson effects
account for the reversible interchange of electrical and thermal energies.
The Fourier and Joule effects account for the irreversible effects of heat
evolution. A rigorous description of this subject is available in the

8
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literature (8-16). A summary of the important analytical relationships is
presented, however, so that the problem of cooling a ground troop dressed in
CW protective clothing can be evaluated on a quantitative basis.

A thermoelectric couple is an electrical circuit consisting of two differ-
ent semiconductors connected in series (Fig. 4, Views a and b). The two semi-
conductors are n-type and p-type. An n-type semicoinductor has an excess of
electrons and is classified as having negative thermoelectric power. A p-type
semiconductor has a deficiency of electrons (an excess of holes) and is clas-
sified as having positive thermoelectric power (3,7,8-16,27,68).

TABLE 2. KNOWN THERMOELECTRIC MATERIALS

Figure of Lattice thermal Electronic thermal Operating

merit (Z) conductivity condurlivity Semiconductor temperature

Materials (K -) (Wecm- .K) (Wacm K 1 - ) type (*K)

B:2 Te3  2 x 10-3  0.016 0.004 n or p 300

BISb4Te 7.5  3.3 x 1O3  O.OIC 0.004 p 300

p3

Bi2Te2 e 2.3 x 10-  0.013 0.003 n 300

PbTe 1.2 x 10-  0.02 0,003 n or p 300

3
PbETo~o 1.3 x 10-  0.015 0°003 n 700

GoTe(4ei) 1.6 x 10-  0.02 p 800

ZnSb 1.2 x 10-3  0.17 p 500

AgSbTo2  1.8 x 10-3  0.006 0.002 p 700

MnTe 4 x 10-  0.013 p 1000

-4
InAs(+P) 6 x 10 0.07 n 900

CoS 4 x lO-  0.01 n 1200

CoS(+Ba) 8 x lO-4 0.01 n 1200

ZnO ---- n 1500

Cu2S ---- p

CuBTO3  1.5 x 10-2  0.012 1100

InTo 5 x 10-4  0.008 p 700

*9 XO -4  0.033 n 1200
Go-SI 6 X t0 0.033 p 1200

9

dc 1~~J .



HEAT SOURCE (Qh)

HOT JUNCTION AT TEMPERATURE T ELECTRICAL
i....,. INSULATOR

n-P ELECTRICAL
SEMICONDUCTOR -. CONDUCTOR

ELECTRON @ . p-TYPE SEMICONDUCTOR
MOVEMENT "HOLE MOVEMENT

COLD JUNCTION AT TEMPERAT URE

HEAT DISSIPATED (Qc)

ELECTRICAL
CURRENT LOAD RESISTANCE

POTENTIAL DIFFERENCE
POWER GENERATION MODE

Fiqure 4: View a. Thermoelectric device operation: Power qeneration ,mode.
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Fiqlure 4: View b. Thermoelectric device operation: Heat pump mode.
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Seebeck Effect

Thermoelectric power generation is the result of the Seebeck effect
(8-16,373,374). As shown in Figure 4, View a (power generation mode), when
the two dissimilar semiconductor junctions are maintained at different temper-
atures (Tc and Th), a potential difference (AV) is created and results in
a current flow (I). This open circuit potential difference can be expressed
(8-16,373,374) as:

AV = a(T)[Th - Tc] (2)

in which a(T), the Seebeck coefficient of the two semiconuctors, is given by:

a(T) = ap-type - xn-type (3)

Peltier Effect

Thermoelectric heat pumping, the principal phenomenon of interest in this
Review, utilizes a reverse scheme known as the Peltier effect. In 1834, Jean
C. A. Peltier discovered that the passage of an electrical current through the
junction of two dissimilar conductors could either cool or heat a junction
depending on the direction of the current (8-16,375-378). In addition, the
heat generation or absorption rates (Qc and Qh) were proportional to the
magnitude of the current and dependent on the temperature of the junction.
In Figure 4, View b (heat pump mode), an electrical current (I) passes from
the n-type semiconductor to the p-type semiconductor. The temperature of the
cold junction (Tc) decreases, and heat is absorbed from the ambient. The
heat absorption (cooling) occurs because electrons pass from a low energy
level in the p-type semiconductor to a higher energy level in the n-type semi-
conductor. The absorbed heat is conducted through the semiconductor materials
to the hot junction (Th) by electron transport. The heat is then dissipated
as the electrons return to a lower energy level in the p-type semiconductor.
The quantity of heat absorbed (Peltier heat) at the thermoelectric junction is
given by (8-16,375-378):

Op =a(T)TI (4)

where a(T) is the Seebeck coefficient of the two materials, T is the absolute
temperature of the junction, and I is the current flowing through the junc-
tion.

Thomson Effect

As shown in Figure 5, the Thomson effect (differential Peltier effect)
results in heating or cooling in a homogeneous material when an electrical
current flows in the direction of a temperature gradient (3,7,8-16).

i I
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dT
Tc dx Th
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Figure 5. Thomson effect.

The Thomson heat per unit length of a material is given by (8-16):

dT (5)
QT= r(T) -dx

for

t(T) : T da(T) (6)"
dT

where T(T) is the Thomson coefficient of the material; I is the current flow-
ing through the material; T is the absolute temperature; a(T) is the Seebeck
coefficient of the material; and x is the position along the material in the
direction of the current flow (1). If QT is the heat absorbed when the

directions of I and T coincide, then T(T) is positive. If QT is the heat
dx dT

dissipated when the directions of I and d- coincide, then T(T) is negative.dx

In addition, it is obvious from Equation (6) that if the Seebeck coefficient
[a(T)] is independent of temperature, or a very weak function of temperature,
the Thomson coefficient ['(T)] is zero or very nearly zero.

Fourier Effect

The Fourier effect (thermal conduction) of a material is due to the fact
that a temperature gradient in a material induces a flow of heat in the direc-
tion of the negative temperature gradient (3,7,8-16). The rate at which heat

13
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is conducted across a unit surface of a material can be expressed (3,7,8-16)
as:

k (T) dT (7)

for

k*(T~p~pe At.k * A

k(T) k (T ) p ' t y p e Ap-type) + k n-type An-type) (8)kp-type kn-type

where k(T) is the net thermal conductivity of the materials; T is the absolute
temperature; x is the position along the material in the direction of the flow
of heat; A is the cross-sectional area of a material; z is the length of a
material; and k*(T) is the thermal conductivity of a material.

Joule Effect

Finally, the Joule effect occurs when a current flows through the resis-

tance of an isothermal conductor. Joule heat is given by (3,7,8-16,24,40,45):

Qj : 12R(T) (9)

for

p(T* p(T)*
R) p-type p-typen-type n-type

R(T)) + ) (10)
Ap-type A n-type

where I is the current flowing through the materials; R(T) is the net electri-
cal resistance of the materials; p*(T) is the resistivity of a material; I is
the length of a material; and A is the cross-sectional area of a material.

Thermodynamic Analysis

Thermodynamic analysis of a thermoelectric heat pump requires a relation-
ship between the net heat absorbed at the cold junction and the net heat dis-
sipated at the hot junction. The total heat flow across a thermoelectric
junction is the sum of the heat flows due to Peltier heat (Qp), Thomson heat

14



(QT), Fourier heat (QF), and Joule heat (Qj). A heat balance equation for the
cold junction in Figure 4 is:

-? Qc = QP + QT " OF " QJ (1

Similarly, a heat balance equation for the hot junction in Figure 4 is:

Qh = QP - QT " QF + QJ (12)

Several practical and realistic assumptions are used to simplify the
complex thermodynamic calculations (3,7,8-16,24,27,31,40,45,68):

a. Heat transfer between the hot and cold junctions to the ambient is
perfect.

b. Thermal insulation in the thermoelectric device is perfect.
c. The thermoelectric device's junction resistance is negligible

compared to the bulk resistance of the semiconductor material.
d. The electrical conductivity (6), thermal conductivity (k), and

Seebeck coefficient (a) of the semiconductor materials are
independent of temperature.

With these assumptions, Equations (11) and (12) reduce to:

Qc= QP F QJ (13)

and

Qh QP -F + QJ (14)

The Thomson heat (QT), given by Equation (5), is zero because of Equa-
tion (6) and the assumption that the Seebeck coefficient [a(T)] is independent
of temperature. Substitution of the more complex expressions for Qp, QF,
and Qj yields:

Qc = QT cl - kAT - 1/2 12R (15)

Qh = aThl - kaT + 1/2 12R (16)
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Thermoelectric heat pumps may be designed from two approaches: maximize
the coefficient of performance (Dmax); or, maximize the heat pumping rate
(Qc max) (3,7,8-16,24,27,31,40,379). As will be shown, both of these param-
eters depend strongly on the operating temperature of the heat pump.

The coefficient of performance (0) is given by the ratio of the rate of
heat removal from the cooled junction (Qc) divided by the electrical input
power (P) (7,8-16,31,379):

Q (17)
P

The heat pumping rate (Qc) (refrigeration or cooling effect) is the rate
at which heat is removed from the cold reservoir.

Maximum Coefficient of Performance

The rate of heat removal from the cold reservoir is given by Equa-
tion (15). From Figure 4 (heat pump mode), the applied voltaqe is:

V = aAT +IR (18)

where

AT = Th - Tc (19)

and the input power is:

P = VI (20)

and from Equation (18):

P = aAT + 12R (21)

or

= V(V-aAT) (22)

R

if Equations (20) and (21) are solved for I.
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From Equations (15), (17), and (21), the coefficient of performance for
the thermoelectric heat pump is:

(cTc I - 1/2 12R - kAT) (23)

(czIAT + I2R)

If a new variable is defined such that

IR (24)

a

and Equation (24) is substituted into Equation (23), the coefficient of per-
formance can be written as:

[mTc - 1/2 m - kAT] (25)

(aIAT + I2R)

The product of the thermal conductance and series resistance of the

thermoelectric heat pump is, from Equations (8) and (10):

f An-typexp-type
KR =k n-typepn-type + k ntypepp-type +AtypeZntype)

! f~p-typepen-typee

kp-typePn-type (Aptypentype) + kptypePp-type (26)

Equation (26) can be simplified by making the following substitutions:

kn-type k n

kp-type k p

Pn-type = n

Pp-type p

17



An-type :Ii- typb n

Ap'-type
£p-type P

Thus,

KRkhP) k + kp n (- pp (28)

Examination of Equations (2) and (28) reveals two variabies which can be
adjusted to maximize the coefficient of performance. These are the param-

eters w and the shape ratio (v).
Vp

From a physical viewpoint of the purpose of a heat punp, the coefficient
of performance is a positive quantity [Eq. (17)]; and the coefficient is maxi-

mized by minimizing the product KR. The value of (vn)--which maximizes the

coefficient--can be obtained by setting the partial derivative of KR with

respect to (n) equal to zero. The result is:
Vp

(v)=(Pnkp)
t/ 2Vn = (29)

V p Ppkn (9

Vn hsti au sand the value of KR when (V) has this value "s:Up

KR min = [(Pnkn) 1/2 + (pp k )1/2]2 (30)

The value of the coefficient of performance of the heat pump with this optimum
geometry is:

[mTc - 1/2 m (ATi)]
z T (31)

(mAT + m
2)

18
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where the figure of merit (Z) is:

2

[( a } (32)
I(Pnkn)'/' + (ppkp)'//2

The current which maximizes the coefficient of performance is found by setting
the derivative of the coefficient of performance with respect to m equal to
zero. The value obtained is:

I- aAT (33)

[R(w-1)]

where

: (1+ZT)' /2 (34)

and

T 1 I/ 2 (Th+Tc) (35)

At this value of current, the coefficient of performance of the heat pump is:

Th

"max T ('+l) (36)

Thus, Equation (36) shows that the maximum coefficient of performance
depends on the properties of the thermoelectric materials only through the
figure of merit (Z). From Equations (18) and (33), the value of the applied
voltage which maximizes the coefficienlt of performdnce is:

V (aATw) (37)
(Wi-1)
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Another significant fact is that the applied voltage is independent of the
geometry of the thermoelectric heat pump. The power input, from Equation (22)
is:

P = (R) F (aAT 2  (38): ~RL(wi)_(8

For completeness, the heat pumping rate with maximized coefficient of per-
formance Cdn be calculated using Equations (17), (36), and (38). However, the
series resistance value of R must first be calculated for Equation (38).

The shape ratio (vn), given by Equation (29), maximizes the coefficient of
Vp,

performance. The series resistance, defined by Equation (8), becomes:

R = (--)(-)(JP)/ (-)/()
Z p/2  Vp kP ZI / 2  vn kn

Thus, the pumping rate is:

rKl 1/2 I P-Tj

A~T (cW+1) LcI P

Maximum Heat Pumping Rate

The current for a maximum heat pumping rate can be obtained by taking the
derivative of the heat pumping rate equation [Equation (15)] with respect to
the current (1), and setting the result equal to zero. The current which max-
imizes the heat pumping rate is:

aTcI= (41)
R

and the applied voltage, using Equation (18), is:

V aTh (42)
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Thus, the maximum heat pumping rate at the current given by Equation (41) is:

.cx2Tc2 .

Qc a 2T- kT (43)cmax =(2

In addition, as evident from Equation (43), the maximum temperature difference
which a thermoelectric heat pump can produce (setting the derivative of
Qc max with respect to I eiual to zero) is:

AT -2T 2  (44)
2RK

Furthermore, AT can be maximized by minimizing KR. From Equations (30)( and (32), ATmax is given by:

AT x ZT c2  (45)maxc

Fundamental Thermoelectric Heat Pump
Design Philosophy

The design of a thermoelectric heat pump for a given application will
probably be constrained with several boundary conditions. Representative of
typical boundary conditions are: the magnitude of the heat load to be pumped;
the temperature difference between the source and sink; the thermoelectric
properties of the semiconductor materials; the contact resistivity of the
thermoelectric element; the volume and space available; and the desirable
economic features to be incorporated into the design. Even though a near
complete set of boundary conditions might be available, the design of a
thermoelectric heat pump is not completely s'raightforward. Many design
problems stem from economic rather than technical considerations. The example
in the following section emphasizes this point.

DESIGNING WITH THERMOELECTRIC
HEAT PUMP TECHNOLOGY

Fundamentals to be Considered

A thermoelectric heat pump can be operated under two basic conditions
(3,7,8-16,24,27,31,40,379):

a. the condition of maximum coefficient of performance (max), and
h. the condition of maximum heat oump capacity (Qc max).
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In the first case, the maximization of the coefficient of performance mini-
mizes the electrical input power required to dissipate a given quantity of
heat per unit of time, hut maximizes the total number of thermoelectric heat
pump elements needed for the system. In the second case, the maximization of
the heat pump capacity maximizes the quantity of heat dissipated per unit of
time, but at the expense of the electrical input power required to operate the
system.

In the example design that follows, calculations are made for the two
basic conditions. For a final design, the designer would optimize a hardware
configuration somewhere between the two alternatives in order to accommodate
such physical constraints as weight, volume, power supply requirements, and
cost. The solutioi. to this tedious problem, however, car conveniently be
obtained using an iterative computerized technique--such as the Martin
Marietta Thermal Analyzer System (MITAS)--that uses a lImped-parameter thermal
network analysis method (380-381).

Statement of the Problem

As a result of the metabolic and environmental heat burden pldced on a
ground troop wearing C14 protective clothing, a thermal conditioning system is
needed to extend the time an individual can comfortably work in this environ-

ment. A possible technology for the thermal conditioning system is a thermo-
electric heat pump. The potential for thermoelectric heat pumping is analyzed
by modeling the numan thermal conditioning problem (Fio. 6), as follows:

The design can be attacked in three phases. [ rst, a certain amount of
heat must flow from the reservoir (heat source) to the cold sink of the
thermoelectric heat pump. Next, that same heat loa- s an additional amount
must be pumped through the module from the cold sink .u the hot sink. In the
last phase, heat must flow from the hot sink to some e:,ternal reservoir (the
ambient). The first and last phases require the application of heat-transfer
laws, while the second phase requires use of the analytical thermoelectric
principles presented in this Review.

As shown in Figure 6, an individual dissipates a known quantity of heat
(Qm) that is dependent on the metabolic rate. For this analysis, the meta-
bolic rates and their associated average heat loads are summarized in Table 3
(382). Since the subject is dressed in CW protective clothing, stabilizing
the individual's temperature (oral) (Ti) at a nominal 98.60F (370C) is
desirable. Having the temperature of the air inside the protective clothing
(Ts) equal to the temperature of the thermoelectric cold sink (Tc = 74F
or 23.3 0C) is also desirable. The ambient temperature (Ta), external to the
protective clothing, is 90'F (32.21C) for this analysis (a realistic and typi-
cal value). The temperature of the heat sink (Th) ih 105OF (40.6°C) to
optimize the thermoelectric heat pump performance and heat transfer to the
ambient. The environmental heat load (Qe) gained by a ground troop dressed
in CW protective clothinq is primarily the result of the radiant enerqy from
the sun and sky, both that which is direct and that which is reflected and
reradiated by the terrain. Adolph reports that, for an individual at rest,
approximately 95 Calories/hr (Calorie kiloqram calorie and calorie = gram
calorie) (23.9 BTU/hr or 110.4 W) are added to the thermal burden when the
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ambient temperature is 90'F (32.21C) (383). The parameters illustrated in
Fiqure 6, and the values selected for this analysis, are summarized in
Table 4.

The design of the thermoelectric heat pump module is based on the material
properties for industrial grade bismuth telluride (Bi 2Te3 ). The material
parameters are summarized in Table 5 (295,299,301,309,316,319,322,325,326,
329,336,343,347,363).

THERMOELECTRIC
Qe Ta HEAT PUMP MODULE

Th

HUMAN Qd=Qa + Pe

SUBJECT QaQe+Qm

Qm

Ti

HEAT
EXCHANGER/ COLD EXCHANGER

CW PROTECTIVE CLOTHING

Figure 6. Model of the thermal conditioning problem for an individual dressed
in CW protective clothing.
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TABLE 3. HUMAN METABOLIC RATES AND THEIR ASSOCIATED AVERAGE HEAT LOADS

MAverage Heat Load (Qm)
~Metabolic Rate

W) (BTU/hr) (Calories/hr)*

Rest 93 20.2 80

Light work 520 112.7 447.4

Moderate work 690 149.6 593.7

Heavy work 1035 224.4 890.5

All-out effort 1850 401.1 1591,8

*Calorie = kilogram calorie

TABLE 4. SUMMARY OF THE VALUES SELECTED FOR THE MODEL IN FIGURE 6

Parameter Value

Qa Qe + Qm (see Table 3)

Qd Qa + Pe (to be calculated)

Qe 95 Calories/hr (23.9 BTU/hr)(110.4 W)

Qm (See Table 3)

Ta 90OF (32.20C)(305.36°K)

Tc 740F (23.30C)(296.46K)

Th 1050F (40.60C)(313.760 K)

Ti 98.6-F (370C)(310.160K)

Ts  740 F (23.3 0C)(296.460K)
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TABLE 5. THERMOELECTRIC MATERIAL PROPERTIES

Parameter Value

n-type -232 PV * *K-

a.p-type 228 PV * 'K-1

kn-type 0.016 W ° 'K'- cm

kp-type 0.014 W • 'K-l • cm-f

Pn-type 1.11x10 - 3 ohm • cm

Pp-type 1.12x10-3 ohm • cm

%n-type 0.125 in. (0.3175 cm)

X p-type 0.125 in. ((.3175 cm)

An-type 4.91x0 - 2 in.2 (0.3167 cm2 )

Ap-type 4.91x10 - 2 in.2 (0.3167 cm2 )

Design for Maximum Coefficient
of Performance

Since, in a number of case analyses, several of the results for specific
calculations will be used, they wil' be made next and applied accordingly:

From Equation (3):

= [228 - (-232)]

= 4.6x10-4 volts •K-1

From Equation (8):

k = [(0.014)(0.3167) + (0.016)(0.3167)]
(0.3175) (0.3175)

k= 2.99 x 10- 2 W •K 1 •cm-1
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From Equation (10):

R [(1.12x I 0-3 )(0.3175) + (.llx10" 3 )(0.3175)]
(0.3167) (0.3167)

R : 2.24 x 10- ohms

From Equation (19):

AT = (313.76 - 296.46)

AT = 17.3°K

From Equation (32):

z (4.6xi0 4- ) 2

[(1.11x10-3)(0.016)]1/2 + [(1.12x10-3)(0.014)]I/2

Z 3.18x10-3°K-1

From Equation (35):

T= 1/2(313.76+296.46)

T = 305.11°K

From Equation (34):

= + (3.18x10-3)(305.11) 11/2

1.404

From Equation (36):

313 76(296 1.4 4 - (w& )

max = 29646) 29546
17.3 1.404+1

@max = 2.46
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From Equation (33):

(4.6x1O-)(17.3)

(2.24xi0- 3 )(1.404-1)

I 8.794 amperes

From Equation (37):

= (4.6xi0-
4 )(17.3)(1.404)

(1.404-1)

V = 0.028 volts per couple

Finally, from Equation (38):

1.404 (4.6xI0-4 )(17.3) 2
P = (2.4i_

2.24x1 3  (1.404-1)

P = 0.246 W per couple

For each metabolic rate, a case analysis will he accomplished to determine
the number of couples required to dissipate the heat load and the operating
power supply voltage. The number of couples required to dissipate a given
heat load is expressed as:

N = Net heat to be pumped (46)

Heat pumped per couple

The operating supply voltage (Vo) is given by:

Vo = (Voltage per couple)(Number of couples)

or

Vo = VN (47)
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Case 1: Metabolic rate at rest (Qm =93 W)

From Figure 6 and Table 4:

Qa = 110.4 + 93

Qa = 203.4 W

From Equation (46):

N 203.4
0.246

N =827 couples

From Equation (47):

Vo = (0.028)(827)

Vo = 23.2 volts

Case 2: Metabolic rate for light work (Qm = 520 W)

From Figure 6 and Table 4:

Qa = 110.4 + 520

Qa = 630.4 W

From Equation (46):

N = 630.4
0.246

N = 2563 couples

From Equation (47):

Vo = (0.028)(2563)

Vo = 71.8 volts
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Case 3: Metabolic rate for moderate work (Qm = 690 W)

From Figure 6 and Table 4:

Qa = 110.4 4- 690

Qa = 800.4 W

From Equation (46):

800.4
N-=

0.246

N = 3254 couples

From Equation (47):

Vo = (0.028)(3254)

Vo = 91.1 volts

Case 4: Metabolic rate for heavy work (Qm = 1035 W)

From Figure 6 and Table 4:

Qa = 110.4 + 1035

Qa = 1145.4 W

From Equation (46):

1145.4
0.246

N = 4657 couples

From Equation (47):

Vo = (0.028)(4657)

Vo = 130.4 volts
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Case 5: Metabolic rate for all-out effort (Qm 1850 W)

From Figure 6 and Table 4:

Qa = 110.4 + 1850

Qa = 1960.4 W

From Equation (46):

N 1960.4
0.246

N =7970 couples

From Equation (47):

Vo = (0.028)(7970)

Vo = 223.2 volts

Summarized in Table 6 are the important parameters for the maximum
coefficient of performance design:

TABLE 6. MAXIMUM COEFFICIENT OF PERFORMANCE DESIGN

Po,;er Supply Requirements
Current Voltage Power No. of

Metabolic rate (amperes) (volts) (W) couples

Rest 8.794 23.2 204.1 827

Light work 8.794 71.8 631.4 2563

Moderate work 8.794 91.1 801.1 3254

Heavy work 8.794 130.4 1146.7 4657

All-out effort 8.794 223.2 1962.8 7970
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Design for Maximum Heat Pump Capacity

Since, in a number of case analyses, several of the results for specific
calculations will be used, they will be made next using applicable values
calculated in the previous section:

From Equation (41):

(4.6x10-4 )(296.46)

(2.24xi0 -3 )

1 60.9 amperes

From Equation (42):

V = (4.6xi0-4)(313.76)

V = 0.144 volts per couple

From Equation (43):

max : [(4.6xi10-4)(296.46)'] - (2-99xi0 2 )(17.3)
(2)(2.24x!0 3 )

Qc max = 4.15 watts per couple

Case 1: Metabolic rate at rest (Qm = 93 W)

From Figure 6 and Table 4:

Qa = 110.4 + 93

Qa = 203.4 W

From Equation (46):

N 203.4
4.15

N = 50 couples
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From Equation (47):

Vo = (0.144)(50)

Vo = 7.2 volts

Case 2: Metabolic rate for light work (Qm = 520 W)

From Figure 6 and Table 4:

Qa = 110.4 + 520

Qa = 630.4 W

From Equation (46):

N 630.4
4.15

N =152 couples

From Equation (47):

Vo = (0.144)(152)

Vo = 21.9 volts

Case 3: Metabolic rite for moderate work (Qm = 690 W)

From Figure 6 and Table 4:

Qa = 110.4 + 690

Qa = 800.4 W

From Equation ('5):

800.4N-=
4.15

N =193 couples
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From Equation (47):

Vo = (0.144)(193)

Vo = 27.8 volts

Case 4: Metabolic rate for heavy work (Qm = 1035 W)

From Figure 6 and Table 4:

Qa = 110.4 + 1035

Qa = 1145.4 W

From Equation (46):

N 1145.4

4.15

N 276 couples

From Equation (47):

Vo = (0.144)(276)

Vo = 39.8 volts

Case 5: Metabolic rate for all-out effort (Qm 1850 W)

From Figure 6 and Table 4:

Qa = 110.4 + 1850

Qa = 1960.4 W

From Equation (46):

N 1960.4
4.15

N = 473 couples
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From Equation (47):

Vo = (0.144)(473)

Vo = 68.1 volts

Summarized in Table 7 are the important parameters for the maxilnum heat
pump capacity design:

TABLE 7. MAXIMUM HEAT PUMP CAPACITY DESIGN

Power Supply Requirements
Current Voltage Power No. of

Metabolic rate (amperes) (volts) (W) couples

Rest 60.9 7.2 438.5 50

Light work 60.9 21.9 1333.7 152

Moderate work 60.9 27.8 1693.1 193

Heavy won: 60.9 39.8 2423.8 276

All-out effort 60.9 68.1 4147.3 473

Discussed in the next section are the meaning of these calculations, and
the problems one might encounter trying to implement them with hardware.

IMPLEMENTING A THERMOELECTRIC HEAT PUMP DESIGN

Comments on Design Calculations

The primary components of a thermoelectric coolinq system are: the ther-
moelectric module design; the transfer of thermal energy between a thernoelec-
tric surface and the ambient medium surrounding it; and the source of electri-
cal energy to power the thermoelectric modules. The authors will use the
results of the "moderate metabolic rate" condition to complete the analysis of
a thermoelectric cooling system design. (This decision was made because the
"moderate metabolic rate" represents an "average" workload for the problem athand.)

Thermoelectric Module Design

A thermoelectric module is an assembly of several thermoelectric semicon-
ductor elements (couples). By definition, a thermoelectric module is the
smallest assembly of elements that can be physically interchanged as a unit in
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thermoelectric system (3,8-16,384). The number of elements in a module, or
its heat pumping capacity, are not specified in the module definition.

The two basic types of thermoelectric modules are: electrically isolated,
and electrically insulated (8-16,54,234).

The electrically isolated module is known as a direct transfer device.
This module design divides the heat exchanger into segments, and each segment
transfers heat from one side to its other side. A cross-sectional view of
this design is shown in Figure 7. This design is used primarily in large air-
conditioning applications.

The electrically insulated variant is the most common thermoelectric
module design. In this type of module, a layer of electrical insulation is
sandwiched between the thermoelectric elements and the heat exchanger base.
Shown in Fiaure 8 is a cross-sectional view of a typical electrically
insulated module. Since the layer of electrical insulation is directly in the
heat path, this insulation must be a good thermal conductor; consequently, the
range of materials is strictly limited (e.g., Mylar, glass, aluminum oxide,

f epoxy resin, mica, and silicon grease). The geometry (thin, flat, large
planar surface area) makes this design a better choice for regulating the
thermal burden imposed by CW protective clothing.

A typical commercially available module contains 44 of the elements (or
22 couples), is 1.5 in. by 1.5 in. by 0.25 in. thick (3.81 cm by 3.81 cm by
0.64 cm thick), weighs approximately 25 grams, and costs approximately
$30/module (254-257). Summarized in Table 8 are the important parameters
associated with the size, volume, and weight of the thermoelectric module for
the metabolic rate requirem,.nts of moderate work.

As indicated in Table 8, the maximum heat pump capacity parameters would
be very compatible with integrating the thermoelectric cooling system on the
ground troop's back. The maximum coefficient of performance parameters is not
as desirable. The surface area requirement approaches, if not exceeds, the
surface area available on an average male's back; the weight of the thermo-
electric modules exceeds 8 lb; and the cost is not realistic. Could optimiza-
tion of the design by computer techniques produce a more cost effective and
physically compatible (with the individual--particularly surface area and
weight) design? The answer is probably "Yes."

Thermoelectric Module Heat Transfer

For normal operation of a thermoelectric cooling device, it is necessary
to provide efficient heat coupling between the thermoelectric module and the
area or volume to be thermally requlated on one hand, and with the heat trans-

fer system on the other. The purpose of a heat transfer system is to dissi-
pate heat fron the hot junction of a thermoelectric module. The four basic
types of heat transfer systems (385-406) are:

a. air on both sides,
b. air on cold side and fluid on hot side,
c. air on hot side and fluid on cold side, and
d. fluid on both sides.
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Each of these heat transfer systems has been considered for this cooling sys-
tem design, and their respective advantages and disadvantages are summarized
in Table 9 (386,391,392,397,398,401,402,404).

The "air on both sides" heat transfer system is the simplest technology.
Since simplicity is of prime importance in the problem at hand, the author
selected this system for more detailed analysis.

The "air on both sides" heat transfer process is a convective phenomenon.
From Figure 6 and Equations (12), (14), and (16), the total heat flow (Qh)
at the hot junction must be dissipated from the thermoelectric cooling system
for efficient operation. The convective heat transfer process (3,8-16,385,
387-389,403) is governed by the following equation:

( Qd = naAb(Th-T a) (48)

where n is the fin efficiency factor that accounts for the fact that the
fins are not isothermal at their base temperature (Th); B is the heat
exchanger fin factor (equal to the ratio of total fin and plate area to the
base plate area); A is the base plate area; b is the heat-transfer coeffi-
cient for free or forced convection; and Ta is the ambient temperature.

Representative ranges of values for these parameters (8-16,387-389) are:

a. 0.7 < n < 1.0

b. 1.0 < a < 20.0

c. A will be calculated ft2

d. 0.5 < b < 1.0 BTU.hr-l.ft2.OF (free convection)

e. 2.0 < b < 5.0 BTU.hr-l.ft2.OF (forced convection)

f. 10.0 < (Th-Ta) < 30.0 OF

For the moderate metabolic rate considered in this analysis, the value of

Qd must be calculated. From Figure 6, Table 6, Table 7, and the values of
Qa calculated in the case analyses--the value of Qd for maximizing the
coefficient of performance is approximately 1600 W. Similarly, the value of
Qd for maximizing the heat pump capacity is approximately 2500 W.
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TABLE 9. EVALUATION OF HEAT TRANSFER SYSTEMS

Type of system Advantages Disadvantages

Air on both sides Lightest possible Complex air baffling
weight

Least efficient
Uneven temperature distribu-

Easy to maintain lions on exchangers

Requires large surface area

Hot side thermoelectric
modules may overheat

Air on cold side Moderate weight Uneven temperature distribu-
and fluid on tion on cold side
hot side Hot side exchanger

surface area can Maintenance problems
be reduced Increased

Noise level Increases (pumps)

Potential fluid leaks

Requires more electrical
power (pumps)

Air on hot side Moderate weight Uneven temperature distribu-
and fluid on tion on hot side
cold side Cooler hot exchanger

Maintenance problems
Uniform temperature Increased

distribution on
cold side Noise level Increases (pumps)

Potential fluid leaks

Requires more electrical
power (pumps)

Fluid on both sides Isolation of thermo- Most expensive
electric module
components from Highest noise levels
environmental
contaminants Highest weight

Uniform temperature Highest maintenance burden
distribution on
hot and cold sides Potont!al for leaks

Highest consumption of
additional electrical
power (pumps)
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Summarized in Table 10 is the heat transfer surface area requirement for
the moderate metabolic rate, for free and forced convection, and for selection
of the optimum values for the parameters in Equation (48).

As can be observed from Table 10, the required surface areas for the heat
transfer sinks are very large, and the associated weight would prohibit imple-
mentation with a human subject. Computer optimization of the thermoelectric
module design would not resolve this problem. Perhaps one of the liquid
transfer schemes would be of benefit, but then such objectives as simplicity
and low cost would be compromised.

Power Supply

One of the primary components of a thermoelectric cooling system is the
power supply. The selection of a power supply affects such factors in a ther-
moelectric module as configuration and design, duration of continuous oper3-
tion, cost, and mass.

The current power supply technologies available for the production of
electrical energy include chemical fuels, solar, radioisotopes, and storage
batteries (407-416). The most suitable power supply technology for a portable
thermoelectric cooling system is the storage battery.

Fundamentally, storage batteries are classified as "primary" if they can-
not be recharged or are intended for a single discharge, and as "secondary" if
they can be recharged or are intended to be charged or discharged (cycled a
number of times). For the thermoelectric cooling system being analyzed, the
secondary storage battery offers the most flexibility and long-term economics.

The important characteristics of the four major types of commercially
available secondary storage batteries are summarized in Table 11 (417-430).

According to the characteristics in Table 11, the most suitable power
supply for a portable thermoelectric cooling system is the silver-zinc second-
ary storage battery. This battery offers the most with respect to voltage,
current delivery capability, and energy density.

Continuing with the design analysis, Table 12 was constructed using the
optimum values for the silver-zinc battery and the power supply data in

,4 Tables 6 and 7 for the "moderate work" metabolic rate (417-430).

As shown in Table 12, the number of cells, their weight, and displacement
are excessive relative to the number of hours they can be expected to perform
aL the rated load. Computer optimization of the thermoelectric cooling system
design will not resolve this problem.

CONCLIS ION

The theory, applications, and analysis of the problem of cooling a ground
troop dressed in CW protective clothing have been addressed. The analysis has
shown that the current thermoelectric cooling technology will not practically
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or efficiently support the thermal regulation requirements for a human dressed
in the CW protective clothing ensemble (for the temperature and thermal loads
considered). However, before thermoelectric cooling is totally discarded, one
final question should now be considered: If only a portion of the total ther-
mal burden is removed, does thermoelectric cooling become more attractive and
realistic? That is, if a thermoelectric cooling system is designed to be com-
patible with an individual from a physical viewpoint (mass, volumetric dis-
placement, etc.), provided that the design will dissipate X watts, will the
performance and length of time that an individual can work in the ensemble be
marginally improved?
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ABBREVIATIONS, ACRONYMS, AND SYMBOLS

A surface area

a Seebeck coefficient

Ag silver

Ah ampere-hours

As arsenic

Ba barium

Bi bismuth

b heat transfer coefficient

$heat exchanger fin factor

BTU British thermal unit

Calorie kilogram-calorie

calorie gram-calore

Ce cerium

Cu copper
°C degrees Centigrade

cm centimeter

cm2 centimeter squared

cm3  centimeter cubed

CW chemical warfare

6 electrical conductivity

df(x) first derivative [of a
dx function f(x)] with respect to x

AT temperature difference

AV voltage difference

Eg band-gap energy of a semiconductor

n efficiency

OF degrees Fahrenheit

ft2  foot squared

g gram

Ge germanium

hr hour

I electrical current

In indium

in. inch
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ABBREVIATIONS, ACRONYMS, AND SYMBOLS (Cont'd.)

in.2  inch squared

in.3 inch cubed

k thermal conductivity

OK degrees Kelvin

KR product of net thermal conductiv-

ity and net electrical conduc-

tivity

9. length

In substitution variable used to

simplify a complex mathematical

expression

In meter

Im2  meter squared
m3  

meter cubed

mAh mill ampere-hours

MITAS Martin Marietta thermal analysis
computer program

Mn manganese

PV microvolt

N number of thermoelectric couples

V shape ratio variable (area to

length)

Nc free charge carrier density

n-type semiconductor with an excess

electron concentration

0 oxygen

wsubstitution variable used to

simplify a complex mathematical

expression

ohm unit of electrical resistance

P electrical power

P phosphorous

thermoelectric coefficient of

performance
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ABBREVIATIONS, ACRONYMS, AND SYMBOLS (Cont'd.)

Pb lead

Pe net Joule heat of a

thermoelectric cooling system

p-type semiconductor with an excess hole

concentration

Qa heat to be absorbed by the cold

junction of a thermoelectric

cooling system

Qc heat flow into a thermoelectric

cold junction

Qd heat to be dissipated by a

thermoelectric cooling system

Qe environmental heat leakage

absorbed by a subject dressed in

CW protective clothing

QF Fourier heat

Qhht flow from a thermioelectric

hot junction

QJ Joule heat

QM metabolic heat

Qp Peltier heat

QT Thomson heat

R net electrical resistance

p resistivity

S sulfur

Sb antimony

Se selenium

Si silicon

T absolute temperature

T Thomson coefficient

(T) functional temperature dependence

Taverage absolute temperature

Ta temperature of the ambient air

external to a CW protective

ensemble
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ABBREVIATIONS, ACRONYMS, AND SYMBOLS (Cont'd.)

Tc temperature of a thermoelectric

cold junction

Te tellurium

Th temperature of a thermoelectric

hot junction

Ti  human temperature (oral)

Ts  temperature of the air inside a

CW protective ensemble

V voltage

Vo  operating power supply voltage

W watts

x position

Z thermoelectric figure of merit

Zn zinc
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